Searching for the X Factor

Young Boy Looking Through Binoculars Hiding in Grass

Hyperinsulinemia plays the dominant role in provoking obesity and fatty liver disease, but what causes it?

Insulin is intimately related to our diet, so that was naturally the first place to look. Highly refined and processed carbohydrates, such as sugars, flour, bread, pasta, muffins, donuts, rice and potatoes are well known to raise blood glucose and insulin production. This became known as the carbohydrate-insulin hypothesis, and forms the rational basis for many of the low-carbohydrate diets such as the Atkins diet.

These are not new ideas, but very old ones. The first low carbohydrate diet dates all the way back to the mid 19th century. William Banting (1796–1878) published in 1863 the pamphlet Letter on Corpulence, Addressed to the Public, which is often considered the world’s first diet book. Weighing 202 pounds (91.6 kilograms), Banting had been trying unsuccessfully to lose weight by eating less and exercising more. But, just as today’s dieters, he was unsuccessful.

xfactorpost1On the advice of his surgeon, Banting tried a new approach. He strenuously avoided all breads, milk, beer, sweets and potatoes that had previously made up a large portion of his diet. William Banting lost weight, and successfully kept it off. For most of the next century, diets low in refined carbohydrates were accepted as the standard treatment for obesity.

For all the success of low-carb diets, the carbohydrate insulin hypothesis remains incomplete. High dietary intake of refined carbohydrates is an important contributor to high insulin levels, but not the only contributor. There are many other significant influences. For this, we need to understand insulin resistance.

Insulin resistance – The major player

Insulin acts like a key to open a gate for glucose to enter the cell for energy. In the insulin resistance state, normal levels of insulin no longer open this gate and glucose piles up outside in the bloodstream.

insul-resistanceTo compensate, the body produces more insulin to ‘overcome’ this resistance and force the blood glucose inside the cell. This normalizes blood glucose levels at the cost of persistent hyperinsulinemia. We care about insulin resistance so much because this hyperinsulinemia will drive overall weight gain. But how does this insulin resistance develop in the first place?

Does obesity cause IR?

Type 2 diabetes is a disease of high insulin resistance. Obesity typically precedes the diagnosis of type 2 diabetes by a decade or more, so many presume that obesity itself causes insulin resistance. Decreased insulin resistance often accompanies weight loss. Insulin resistance gradually increases with obesity and further with pre-diabetes and type 2 diabetes. Obese, but otherwise normal (non-diabetic) patients have substantially increased insulin resistance compared to lean patients. Insulin resistance increases as you progress through the spectrum of obesity, pre-diabetes and then type 2 diabetes.

Understanding how obesity actually causes insulin resistance proved difficult. The first suspect was elevated fatty acids in the blood, which are increased with obesity. Insulin activates LPL, moving those fatty acids into adipocytes for storage. Fatty acid levels should not stay high unless insulin is not working properly. In other words, insulin resistance causes high fatty acid levels, rather than the other way around. This is reinforced by the fact that infusions of free fatty acids into the blood do not raise insulin resistance.

So, if fatty acids were not the causal factor, what was? Adiponectin, involved in fatty acid oxidation, was identified in 1995. However, the role it plays in obesity and IR is still unknown. Resistin, discovered in 2001, was given its name in the mistaken belief that it was the long-lost hormone that caused insulin resistance. Other factors such as interleukin-6, tumor necrosis factor, retinol-binding protein 4 and plasminogen-activating factor has all been investigated as a contributing hormone, but all have been found inadequate.

Unable to find the hormonal mediator of insulin resistance despite 35 years of intensive and dogged research, it is best to consider that perhaps obesity does not cause insulin resistance. After all, obesity and insulin resistance can be related in three possible ways. First, obesity might cause IR. However, this does not explain the importance of central obesity, or how type 2 diabetes can develop in normal weight patients. Insulin resistance may cause obesity, but this is unlikely since obesity typically pre-dates insulin resistance. Decades of intense research yields no definitive proof exists that either is true.

xfactorpost2A third, more likely possibility exists. The same fundamental root cause may underlie both obesity and insulin resistance and possibly other closely associated diseases. The past twenty years had identified syndrome X, now known as the metabolic syndrome (MetS).

Metabolic syndrome

Our understanding of the metabolic syndrome began in the 1950s, when high triglycerides were noted to be highly associated with CV disease. In 1961, Dr. Ahrens showed that this abnormality was primarily related to excess dietary carbohydrates rather than dietary fat, as widely expected at the time.

Around the same time, early insulin assays confirmed that many people with relatively minor blood glucose elevations had severe hyperinsulinemia. This was understood as a compensatory mechanism to the elevated insulin resistance. In 1963, the observation that patients with heart attacks often had both high triglycerides and hyperinsulinemia first linked these two diseases.

High blood pressure (hypertension) was associated with hyperinsulinemia as early as 1966 (9). By 1985, researchers showed that much of essential hypertension, so called because the underlying cause had not been identified, was also closely associated with high insulin levels.

By the 1980s all the essential features of metabolic syndrome were identified and established – central obesity, insulin resistance, dyslipidemia (high triglycerides and low HDL) and hypertension. Dr. Gerald Reaven of Stanford University introduced this concept of a single syndrome in his Banting Medal address of 1988, one of the highest profile academic lectures in all of diabetic medicine, calling it ‘Syndrome X’.

The ‘X’ moniker was chosen since it is commonly used in algebra to denote this single unknown variable, emphasizing that this syndrome shared a common underlying pathophysiology as yet unknown. These were not all individual risk factors, but one unified, critically important syndrome.

Criteria for metabolic syndrome

The 2005 National Cholesterol Education Program (NCEP) Adult Treatment Program III (ATP III) defines the metabolic syndrome as three of the following five conditions:

  • Abdominal obesity – Men over 40 inches, women over 35 inches
  • High Blood Glucose – over 100 mg/dL or taking medication
  • High Triglycerides – > 150 mg/dL or taking medication
  • Low High Density Lipoprotein (HDL) – <40 mg/dL (men) or <50 mg/dL (women) or taking medication
  • High Blood pressure – >130 mmHg systolic or >85 diastolic or taking medications

Each additional component of metabolic syndrome increases the risk of future cardiovascular disease. The metabolic syndrome identifies patients with shared group of risk factors that all have a common origin. Insulin resistance, central obesity, high blood pressure and abnormal lipids all reflect a single underlying problem, the unknown X. While obesity is commonly associated, the metabolic syndrome could also be found in approximately 25% of non-obese individuals with normal glucose tolerance levels.

Why LDL is not a criterion

High levels of Low Density Lipoprotein (LDL or ‘bad’ cholesterol) are pointedly NOT one of the criterions of the metabolic syndrome. Many doctors and professional guidelines obsess about LDL, and resort to prescribing statin medications to lower it. High LDL is not part of constellation of the metabolic syndrome, and may not have the same origins.

The prevalence of metabolic syndrome in the United States varies from 22% to 34% depending upon the specific criteria. This is not a rare disease, but instead one that affects close to one third of the adult population of North America. This constellation increases the risk of heart disease by almost 300%. Metabolic syndrome also increased the risk of stroke, cancer, NASH, PCOS, and obstructive sleep apnea. Even more worrisome, this MetS is increasingly being diagnosed in children.

Recent research has supported and extended this concept of a single syndrome with a common cause. Other metabolic abnormalities, including endothelial dysfunction, increased inflammation, sympathetic tone and coagulation have been noted. All the major diseases of the 21st century were all related to a common cause. But what was it?

xfactor01Insulin resistance became established as the central, essential feature of the metabolic syndrome. For this reason, the name Insulin Resistance Syndrome has also been applied and the hyperinsulinemia is understood as a compensatory mechanism. But this does not further our understanding. If insulin resistance causes syndrome X, what causes insulin resistance?

Dr. Reaven hypothesized that chronically hyperinsulinemia was not so innocent. Hyperinsulinemia may cause hypertension through salt and water retention. Hyperinsulinemia stimulates triglyceride synthesis in the liver, which are secreted into the bloodstream as VLDL. Hyperinsulinemia causes obesity. Hyperinsulinemia was causing insulin resistance.

Jason Fung


Low Carb for Beginners

Popular videos about insulin

  • Why you shouldn't fear protein on keto
  • Is obesity caused by too much insulin?
  • The Pathways of Insulin Resistance
  • Weight Control – Calories or Insulin

Earlier with Dr. Jason Fung

Obesity – Solving the Two-Compartment Problem

Why Fasting Is More Effective Than Calorie Counting

Fasting and Cholesterol

The Calorie Debacle

Fasting and Growth Hormone

The Complete Guide to Fasting Is Finally Available!

How Does Fasting Affect Your Brain?

How to Renew Your Body: Fasting and Autophagy

Complications of Diabetes – A Disease Affecting All Organs

How Much Protein Should You Eat?

The Common Currency in Our Bodies Is Not Calories – Guess What It Is?

More with Dr. Fung

Dr. Fung has his own blog at He is also active on Twitter.

His book The Obesity Code is available on Amazon.

The Obesity Code

His new book, The Complete Guide to Fasting is also available on Amazon.



  1. Joel
    Let me first say I love people destroying dogma with data and curiosity. What I cannot support is replacing one ideology about food with another one tied to food that is just as bad. The problem is most people won't realize ketosis for the the world is also a pretty bad idea when you understand mitochondria change programs. You must fix the light environment you are in before you change your foods. So I want to talk about this link here. the Diet Doc Andreas is in Sweden and he is a nice guy. I have not heard him discussing the role of a LACK of sunlight for his countrymen in wellness at all. Cold thermogenesis and high fat is their forte go too's. This makes sense. But what have they all missed in this change of ideology? Nina and Andreas are trying to turn things around in Sweden and I applaud their effort just not their path. Why? We need scientists and journalists to dig deeper into the science to focus their attention on the light problem and not the food and you'll change things quicker. Why? All food is linked to photosyntheitc yield and the SOLAR spectrum. People in Sweden live via a spectral deficit. Look at the picture carefully in this post below. Sweden is a high latitude country. This means there is a lot of sunlight in summer and very little in autumn and winter. In summer people sleep during the summer light so the Swede's dont get the full effect because of the latitude they live at. During winter they go indoors and surround themselves with man made light. So people in Sweden spend a lot of time indoors for 8 months a year in our modern world Do you think this matters to cells? Solution based people look at food first to explain things because this is what they understand best. A solid state clinician, journalist or biologists look to light spectrums because they understand the enitre food web is built by excitons via photosynthesis. When a food guru or a bio-chemist start measuring excitons and writing about them in journals and magazines then I will be excited change is really coming to Scandinavia. Until then, I cannot be so excited about this news from the BMJ about Nina's work. This may surprise some of you, but I will explain. Why would I get excited about replacing one half truth with another? Isn't this a lateral move for human health when you take the long view. This perspective shows you how a half truth becomes a "new ingrained dogma". When you have a deficient light spectrum in your environment it should be obvious ketosis is a wise move, but is life meant to be lived in ketosis year round? Mother Nature's answer is no. The sun grows carbohydrates for a reason and those reasons help fuel the change programs in mitochondria called autophagy and apoptosis. Creating a narrative that thinking nutritional ketosis will change any circadian or mitochondrial disease is pure insanity. People like their version of crazy because it makes sense to the their understanding as it exists now in their own minds but this does not mean it's correct. When somebody comes along with a more radical counterintuitive idea that actually makes more sense they shoot arrows in you. The food industry and nutritionists are doing that to Nina, Noakes, and Fettke now. I like them all, but I know they are not completely right so I am shooting an arrow in them way before the food paradigm can. You need the bad food data to understand the good quantum data. The hardest parts in our lives to prepare us for the best parts of life. Embrace the discomfort of learning this science.........always. The largest communication problem in mankind is we do not listen to comprehend things, we listen to reply way too often. That needs to change. Listening to understand is as important and observing is to vision. Humans see well but they are horrible observers of nature's recipes. This is why we think Nina and Andreas are doing great things when maybe they are not. They are just creating a new ideology to believe in and many lemmings will do so. I cannot get behind that. If that makes me an asshole I'm fine with it. Dynasties must fulfill their destinies. Paradigms are like dynasties. Paradigms must enforce their dynasties. Nature is is different because life is nature’s dynasty. The tragedy of our time in nutrition science and medicine is the monoculture of solution food based ideas: all "thinkers" are forced to believe the same bullshit. Jack Kruse
    Replies: #2, #3
  2. Marion
    Think about this: in northern countries, such as Sweden (or like mine, the Netherlands), people might not get the amount of sunlight - and thus vitamine D - as people from, say, the Mediterranean countries, but ALL of the northern cultures have traditionally eaten a diet high in certain animal fats. In my country, it's raw herring (full of vitamin D) and load of dairy (full of, you guessed it, vitamin D and vitamin K2, which works in tandem with vit D). This is why the lack of sunlight never used to harm us northerners, because by eating our traditional high animal fat foods, we got all the vit D we needed anyway.

    So personally, I think it's lunacy to tell people (and especially people who do NOT live in the Mediterranean) a low at diet, or 'plantbased diet' or even a 'Mediterranean diet' (whatever THAT might entail), because it deprives us sun-bereft northerners from the vit D rich foods we so very much need. That blasted food pyramid did more than just turn people obese and diabetic, it gave us vit D deficiency (-> depression, reduced immunity) and telling people that sat fat is dangerous derived us from vit K2 (-> osteoporosis & calcium deposites in arteries -> heart attacks)

    No matter what you happen to 'believe', the hard fact is that people who, as you said, live in an environment that lacks sunlight NEED animal fats to get enough vit D. No matter what your 'paradigma', the human body NEEDS vitamins and minerals, and you can only get the fat soluble ones, like A and D, from animal fat. Grains contribute very little, ounce for ounce, in the way of vitamins and minerals, and as for sugar... Sugar is as nourishing as tobaccosmoke and probably far more harmful.

    So telling people to eat low fat, high carb, has done great harm to innumerous people, not just by stuffing grains down their throats like they do with geese in France, giving them fatty livers and making them obese and diabetic, but also by deriving them of the vitamin A, D and K2 rich foods we so *desperately* need to thrive.

  3. Apicius
    Joel, not sure I am following you here. Vitamin D rich foods include fatty fish (cod, tuna, mackerel, salmon, anchovies, sardines, etc), eggs, cheese and liver. What part of the LCHF diet is not aligned to Vitamin D nutrition given the above list of foods?

Leave a reply

Reply to comment #0 by

Older posts